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Abstract 
Quantum well infrared photodetectors (QWIPs) have attracted researchers due to their high absorption 

coefficient at longer wavelength, low noise, high operational speed and high infrared sensitivity. In this work 

the author has proposed an intersubabnd GeSn/SiGeSn QWIP on a silicon-on-insulator (SOI) substrate. The top 

SiO2 anti-reflection layer and bottom buried oxide layer create vertical cavity effect that considerably increased 

the light-matter interaction inside the QWIP and thereby the optical response. After that different theoretical 

approaches have been discussed to increase the 3-dB bandwidth (BW) of the QWIP without compromising 

detectivity. This work suggests that the proposed GeSn/SiGeSn QWIPs on SOI are an encouraging contender for 

higher 3-dB BW along with high detectivity in mid infrared region for optical detection.   
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I. Introduction 
Nowadays, mid-infrared (MIR) range [3-5 µm] has attracted researchers because of its different notable 

applications such as spectroscopic sensing, materials processing, chemical and biomolecular sensing, security, 

surveillance. Apart from those applications the MIR region also covers the sensing wavelengths of different 

toxic gasses including CO, CO2, CH4, HF, H2S [1]. Therefore, the continuous increase of applications of MIR 

wavelength demands suitable photodetectors (PDs) with high infrared (IR) sensibility and matured fabrication. 

Over last few decades beyond telecommunication application different narrow bandgap semiconductor-based 

PDs have shown very encouraging performance in the MIR wavelength range. Among them researchers have 

been attracted by quantum well infrared photodetectors (QWIPs) due to their physical characteristics and 

important practical applications in medical imaging, optical communication, spectroscopic sensing [2-6]. Since 

last 30 years several group of researchers have reported their theoretical and experimental analysis of group III-

V-based QWIPs [2,3,7-14]. 

Nowadays, Si-Photonics is emerging as a platform of electronic-photonic integrated circuits (EPICs) 

due to their cheap and mature fabrication, high IR sensibility and high operational speed. The integrated QWIP 

is one of the important units of the EPICs [15]. In spite of the promising performance of commercially available 

III-V-based QWIPs [2,3,7-14], their incompatibility with Si-based complementary-metal-oxide-semiconductor 

(CMOS) processing technology increases the fabrication cost as well as restricts large scale integration. 

Alternatively, SiGe/Si-based QWIPs operated in MIR region have drawn attraction due to their compatibility 

with Si-based CMOS processing technology and monolithic integration on a same Si chip [16-21]. However, the 

large number of nonradiative recombination centres and high lattice mismatch between Ge and Si interface (> 

4%) have limited their performance far below than the III-V-based QWIPs [16,19-21].   

In last two decades the successful growth of high-quality Ge1-xSnx thin films on Si substrate via a 

suitable buffer layer using chemical vapour deposition [22,23] and molecular beam epitaxy [24] have changed 

the scenario completely. Incorporation of α-Sn into Ge shrinks bandgap of the alloy and thereby redshifting the 

direct-band absorption edge [25]. Not only that researchers have theoretically shown that the alloy becomes 

direct bandgap for x > 6% [25], consists of higher saturation velocity [26] and higher mobility [27] than pure 

Ge. Those noteworthy characteristics have attracted researchers to develop different types of PDs [28-36]. 

However, those PDs are suitable only for telecommunication applications. 

Recently, Pareek et al. have theoretically studied the performance of partially strain-balanced, 

interband GeSn/SiGeSn single and multiple QWIP at room temperature in MIR region [37-41]. The poor 

responsivity in the order of ~mA/W [40] and higher dark current of ~µA range [38] may restrict their 

performance to compete with the existing III-V-based QWIPs. We proposed and theoretically analyzed optical 

performance of an intersubband (ISB) GeSn/SiGeSn multiple QWIPs (MQWIPs) in MIR region [42]. In 
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comparison with the previously reported SiGe/Si QWIP, GaAs/AlGaAs QWIP and interband GeSn/SiGeSn 

QWIP, our proposed ISB GeSn/SiGeSn QWIP showed better optical performance in MIR region [42]. However, 

in that analysis we have not focused on 3-dB bandwidth (BW) of the device. After finding those motivational 

results we conducted another study to optimize different structural parameters of the GeSn/SiGeSn QWIP to 

achieve simultaneously high responsivity and low dark current [43]. From this analysis we found that the 

optimized ISB QWIP can give > 100 times more detectivity [43] than previously reported SiGe/Si QWIP and 

interband GeSn/SiGeSn single and multiple QWIP. In addition we calculated BW of the optimally designed 

QWIP i.e. ~45 GHz.  But such a low 3-dB BW may make it unsuitable for recent days’ high-speed optical 

communication system.  

Pareek et al. have described different theoretical approaches to increase the BW of interband 

GeSn/SiGeSn QWIP by increasing the Sn content in the well [38,39] and bias voltage [39,41]. In case of 

increasing Sn concentration to maintain the strain-balanced condition the barrier width should be reduced. On 

the other hand, for a fixed number of well the active region thickness reduces that may increase the electric field 

and thereby reducing the effective barrier height. As a result the increase of Sn concentration increase the dark 

current due to tunneling and thermionic emission phenomenon [38,39]. Again the increase of bias voltage 

reduces the effective barrier height. Therefore, the photo-generated carriers can move towards the contact layers 

with faster rate that may increase the 3-dB BW of the QWIP [39]. However, the increase of bias voltage 

increases the generation of dark current [38]. Thus, either of these two approaches may help to increase the 3-dB 

BW of interband QWIP but simultaneously the detectivity may be reduced. Therefore it is important to increase 

the 3-dB BW of the GeSn/SiGeSn QWIP without compromising its optical property. 

In this study the author has designed a new type ISB GeSn/SiGeSn resonant-cavity-enhanced quantum 

well infrared photodetector (RCE-QWIP) on silicon-on-insulator (SOI) substrate. The top deposited SiO2 and 

bottom buried oxide (BOX) layers create vertical cavity effect that may increase the light-matter interaction 

inside the active layer and thereby the optical responsivity of the QWIP. The author has theoretically shown that 

the presence of vertical cavity helps to increase the external quantum efficiency and responsivity. Finally, 

different approaches of increasing 3-dB BW along with high detectivity have been discussed.  

The remaining part of the paper is organized as follows, the design of the proposed QWIP is shown in 

Sec. 2; the theoretical modeling are summarized in Sec. 3; the results are discussed in Sec. 4 and our study is 

concluded in Sec. 5. 

 

II. Device structure 

 

 
         

Fig. 1: 2D schematic diagram of the intersubband GeSn/SiGeSn RCE-QWIP on SOI substrate. 
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Fig. 1 depicts two dimensional (2D) schematic diagram of the proposed ISB GeSn/SiGeSn RCE-

QWIP. N number of alternative lower bandgap Ge0.84Sn0.16 quantum wells (QWs) and higher bandgaps 

Si0.30Ge0.61Sn0.09 barriers are considered to form active region of the QWIP. We have assumed 20 nm thick 

barriers and 9 nm thick QWs to ensure negligible carriers’ tunneling through the barrier and bound-to-

quasicontinuum transition of the carriers inside the wells due to photon absorption respectively [43]. The active 

region is sandwiched between two heavily doped (~5×10
18

 /cm
3
) p- and n-Si0.34Ge0.56Sn0.10 contact layers. The 

entire structure can be developed on the SOI substrate consists of 1000 nm thick SiO2 and 2500 nm thick top-Si 

layer via a lattice-matched Si0.30Ge0.61Sn0.09 virtual substrate (VS) to make sure that the barriers are fully strain-

relaxed whereas, the wells are compressively strained of ~2.08% [43]. Furthermore as the thickness of QW is 

lower than the critical thickness (~14 nm), the well is defect-free. In this analysis 77 K and 2 V are assumed as 

the operating temperature and applied bias voltage. At this low temperature the thermionic emission assisted 

dark current is very low and at 2 V we can neglect the effect of field assisted tunneling of carriers [43]. On the 

top of QWIP a 300 nm thick SiO2 anti-reflection (AR) layer has been deposited to reduce the reflection of 

incident light from the top surface. The top SiO2 layer and the BOX layer serve as the top and bottom reflectors 

that introduce the vertical cavity effect. Therefore, the light which has entered through the AR layer is reflected 

back from the BOX layer. Thus this multiple-pass technique of the photon energy may increase the light 

absorption inside the active layer and thereby the optical performance. The applied bias may create a band 

bending which helps to flow the injected carriers through the active layer producing dark current. On the other 

hand, in the presence of light energy the photon absorption mechanism helps to raise electrons from bound 

states to qausicontinuum states inside the wells [43]. The movement of those photo-generated electrons towards 

contact layers produce photocurrent. Thus the total current flow through the QWIP is the sum of dark current 

and photocurrent.   

 

III. Theoretical Analysis 
In this section, we have described the theoretical analysis to study the performance of the proposed 

GeSn/SiGeSn QWIP on SOI in MIR, including the absorption coefficient, external quantum efficiency (EQE), 

optical responsivity, 3-dB BW, dark current, dark current noise and detectivity. Due to the lack of experimental 

data for GeSn and SiGeSn alloys, the material parameters of GeSn and SiGeSn alloys used in this study are 

obtained from Si, Ge and α–Sn [42,43].  

 

3.1 Absorption Coefficient 

In this study we have assumed the growth direction of GeSn/SiGeSn QWIP is along z-axis. Thus the 

ISB transition only occurs by absorbing transverse magnetic (TM) polarized light because ISB optical dipole 

moment contains only z-component. On the contrary, as x- and y-components of the ISB dipole moment is zero, 

the ISB transition cannot take place by absorbing transverse electric (TE) polarized light. The absorption 

coefficient of the QWIP can be evaluated by [44,45], 

α ℏω =   
ω

nr cε0

 
 μ21 

2 Γ 2  

 E2 − E1 −  ℏω 2 +  Γ 2  2
 

me
∗

πℏ2LW

  E2 − E1                                                      1  

where ω denotes the angular frequency of the incident photon energy, nr is the refractive index (R.I.) of the 

material, c represents the velocity of light in vacuum, ε0 is the free space permittivity, Γ (= 20 meV) is the line 

width, me
∗  is the electron effective mass, E1 and E2 are the bounded ground state and first excited state subband 

energy, LW denotes the thickness of well and µ21 is the ISB dipole moment which can be expressed as, μ21 =
 φ2 ez φ1  , υΩ represents the wave function of Ω-energy state. 

 

3.2 External Quantum Efficiency 

The EQE of a conventional QWIP can be calculated as [42], 

ηQWIP =   1 − R1  1 − exp −αLW N                                                                                                              2  

where R1 is the reflectivity of the top surface [42], α is the absorption coefficient and N is the number of well. 

The EQE of a RCE-QWIP can be evaluated by, 

ηRCE −QWIP =  
 1 + R2exp −αLW N   1 − R1   1 − exp −αLW N  

1 − 2 R1R2exp −αLW N cos 2βLC + Ψ1 +  Ψ2 +  R1R2exp −2αLW N 
         3  

where R2 is the reflectivity of the BOX layer, LC is the cavity length, Ψ1 and Ψ2 represent the phase shifts 

introduced by the top and bottom SiO2 and BOX layers respectively. The propagation constant β is calculated 

by, β =  
2πnr

λ
 with wavelength λ. 

 

3.3 Escape probability, photoconductive gain and Optical Responsivty, 

The escape probability (pe) denotes the fraction of photo-generated carriers which escape from the QW and 

produce photocurrent. Therefore, if nP, nc and ne denote the concentration of total photo-generated carriers, 
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captured carriers in the neighbourhood QWs and escaped carriers respectively, the escape probability can be 

expressed as, 

pe =
ne

nP

= 1 −
nc

nP

= 1 − pc                                                                                                                                 4  

where pc is the capture probability of the photo-generated carriers inside the QWs. 

The photoconductive gain (gph) can be calculated as [42], 

gph =   
1 − pC

pC

 
1

N
                                                                                                                                                5  

where N is the number of QW. From Eqs. (4) and (5) we can express gph in terms of pe as, 

gph =   
pe

1 − pe

 
1

N
                                                                                                                                                 6  

Again gph can be expressed in terms of photo-generated carriers’ lifetime (τ) as [42], 

gph =  
v F τ

NLP

                                                                                                                                                           7  

where LP is the single period of QWIP that can be measured by, LP = LW + LB with barrier thickness LB, v(F) is 

the carriers’ drift velocity which can be calculated as [42],  

v F =  
μF

 1 +   μF vs  2
                                                                                                                                       8  

where µ is the carriers’ mobility, F is the applied electric field and vs denotes the carriers’ saturation velocity. 

Then from Eqs. (6) and (7) we can express the escape probability in terms of carriers’ lifetime as, 

pe =   
v F τ

LP +  v F τ
                                                                                                                                                9  

The optical responsivity of a QWIP can be calculated by [42], 

𝑅𝜆 =   
eηgph

hc
 λ                                                                                                                                                   10  

where e is the electronic charge, η is the EQE and h denotes the Planck’s constant. 

From Eq. (6) and (10) we can write, 

𝑅𝜆 =  
1

N
 

eηλ

hc
  

pe

1 − pe

                                                                                                                                      11  

The responsivity can be expressed in terms of carriers’ lifetime as [42], 

𝑅𝜆 =  
eηλ

hc
  

v F τ

NLP

                                                                                                                                            12  

The frequency dependent responsivity of QWIP can be calculated using empirical expression as [10], 

𝑅𝜆 ω = 𝑅0𝜆

2

iωτt N + 1 

eiωτt − 1

 1 −  1 − pe eiωτt  2

×   1 − pe 
N+1eiωτt  N+1 −  1 − pe  N + 1 eiωτt + N                                              13  

where τt is the electron transit time i.e. τt =  N + 1 − t vs   with t = 1,2,3...N [10], 𝑅0𝜆 = eσΣ0 2ℏΩ , σ is the 

photo-excitation cross-section, ħΩ represents the incident photon energy and Σm is the electron-sheet 

concentration in m
th

 QW in the bound state. 

 

3.4 Dark Current and Dark Current Noise 

The dark current (Idark) of QWIP can be calculated as [43,45], 

Idark = eAdn F v F                                                                                                                                           14  

where Ad represents cross-sectional area of detection and n(F) is thermally-generated carriers [43]. 

The noise is an important parameter that can affect the operation of MIR PDs. Among different noise 

components we can neglect the effect of Flicker (1/f) noise and Johnson-Nyquist (thermal) noise. The Flicker 

noise only governs at low frequency (< 1 MHz) operation [46] whereas the thermal noise is dominating at high 

operating temperature [43]. Therefore, only dark current shot noise component plays important role in this 

analysis. The dark current shot noise can be calculated by [19], 

 in
2 =   4eIdark gn∆f                                                                                                                                          15  

where gn is noise gain that can be calculated as [19], gn =  gph  1 − pc 2   and Δf is the BW [19]. 

 

3.5 Detectivity 

The detectivity (D
*
) of the QWIP can be calculated by [43], 

D∗ =
𝑅𝜆 AdΔf

  in
2 

                                                                                                                                     (16) 
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IV. Results and Discussions 
In this section we have first investigated the reflectivity of the SOI substrate and then we have shown a 

comparative study of the EQE and optical responsivity spectra of the optimally designed GeSn/SiGeSn QWIP 

on Si [43] and the proposed model. Later we have discussed different theoretical approaches to increase the 3-

dB BW without decreasing the detectivity.   

 
Fig. 2: Reflectivity of the SOI substrate.  

 

We have calculated the reflectivity of the SOI using transfer matrix method (TMM). In Fig. 2 the 

reflectivity shows a clear oscillatory nature. To calculate the reflectivity of the SOI substrate, the reflectances of 

Si substrate, Oxide layer and top Si layer have been taken into consideration. The oscillatory nature of 

reflectivity gives a clear evidence of the interference between those layers. The peak reflectivity can be achieved 

~55%. In mid infrared region both SiO2 and Si layers act as transparent, therefore the responsivity is free from 

any additional absorption loss introduced by SOI substrate. 

 
Fig. 3: Variation of Calculated EQE as a function of wavelength (Photon Energy) of GeSn/SiGeSn QWIP-on-Si 

and QWIP-on-SOI.  
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Fig. 4: Variation of Calculated responisivity against wavelength (Photon Energy) of GeSn/SiGeSn QWIP-on-Si 

and QWIP-on-SOI.  

 

The EQE and optical responsivity have been calculated using Eqs. (2)-(3) and (10) respectively. Fig. 3 

and 4 depict the variation of EQE and optical responsivity as a function of optical wavelength (Photon energy) 
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reflectivity of SOI substrate which shows an oscillatory nature as depicted in Fig. 2. At the peak reflectivity 

(~55%) more amount of light can be reflected from the BOX layer that may increase the light-matter interaction 

and thereby the EQE and responsivity.  

 To give a clear view of the resonating effect we have used finite element method (FEM) to show the 

simulated optical field distribution inside the QWIP-on-Si and QWIP-on-SOI in Fig. 5. In Fig. 5(a) inspite of 

strong reflection of the incident photon energy at air-SiO2 interface a small amount of light can enter inside the 

QWIP. But due to smaller difference of RIs between Si0.30Ge0.61Sn0.09 VS (n~3.95) and Si substrate (n~3.45) a 

poor optical confinement occurs. As a result, the light intensity is very weak at the active region. On the other 

hand, for the QWIP-on-SOI model depicted in Fig. 5(b), the absorbed light can pass multiple times inside the 

QWIP because of the reflection between air-SiO2 and BOX-Si interfaces. The higher contrast of RIs between 

SiO2 (n~1.45) and Si (n~3.45) creates optical confinement that may develop standing wave pattern. Therefore, 

the intensity of the light increases at the active region by ~165% than the conventional QWIP-on-Si structure. 

This simulated result gives a strong agreement with our calculated data that the EQE and optical responsivity of 

the QWIP can be increased by using SOI substrate instead of Si. In the presence of TM polarized light the 

simulated electric field (EZ) distribution inside the QWIP-on-Si and QWIP-on-SOI models are illustrated in Fig. 

6.  
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Fig. 5: Simulated optical field distribution of GeSn/SiGeSn (a) QWIP-on-Si and (b) QWIP-on-SOI in MIR 

region. 

 

 
Fig. 6: Simulated electric field distribution of GeSn/SiGeSn (a) QWIP-on-Si and (b) QWIP-on-SOI in MIR 

region in the presence of TM polarized light. (c) Electric field distribution in arbitrary unit. 
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Fig. 7: Variation of normalized responsivity with operating frequency for different number of well. 
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Fig. 8: (a) Variation of 3-dB Bandwidth and EQE as a function of well number. (b) Variation of EQE-

Bandwidth product against well number. 
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Fig. 9: Variation of carrier escape probability and 3-dB BW as a function of carrier lifetime. 

 
Fig. 10: Variation of responsivity as a function of carrier lifetime. 

 

Figure 9 exhibits the variation of carriers’ escape probability and 3-dB BW as a function of carrier 

lifetime calculated using Eqs. (9) and (13) respectively for a fixed number of QW. The increase of carrier 

lifetime helps to escape more numbers of carriers that are generated due to photon absorption from the QWs and 

move towards the contacts. Thus the escape probability increases with increase of carriers’ lifetime and beyond 

30 ps it shows a saturation trend where almost more than 96% of the photo-generated carriers escape from the 

well. On the other hand, as the photo-generated carriers with larger lifetime move faster towards the contacts 

before capturing to the neighbouring well, the speed of the QWIP increases and thereby the 3-dB BW. 

Therefore, the 3-dB BW also increases with increase of the carrier lifetime. The effect of carrier lifetime on the 

optical responsivity has been calculated using Eq. (12) and plotted in Fig. 10. As the escape rate of photo-

generated carriers increases with increase of carrier lifetime as shown in Fig. 9, the concentration of photo-

generated carriers increase at the contacts and thereby the optical responsivity. These results illustrate that the 3-

dB BW and responsivity both increase with increase of carrier lifetime from 2 ps to 30 ps very rapidly and 

beyond that they increase with slower rate as most of the photo-generated carriers (> 96%) whose lifetime is 
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more than 30 ps escape from the well. So it can be stated that higher carrier lifetime may yield higher 3-dB BW 

and responsivity. The carrier lifetime may be increased by using chemical mechanical polishing technique 

which may develop a defect-free structure and reduce different nonradiative recombination processes such as 

Shockley-Read-Hall, surface recombination etc. However, it cannot be possible to make a complete defect-free 

structure with free from the nonradiative recombination centres. Thus we cannot increase the carriers’ lifetime 

infinitely. Therefore, we have considered 30 ps as the carrier lifetime for which our proposed model can achieve 

3dB-BW and detectivity of 95 GHz and 17.6×10
12

 cm·Hz
1/2

W
-1

 at 2 V respectively which are more than 2 and 5 

times of the BW and detectivity obtained from the optimally designed GeSn/SiGeSn QWIP-on-Si [43]. In Table 

1 we have given our estimated results along with the optimally designed GeSn/SiGeSn QWIP.  

 

Table 1: Calculated 3-dB BW and detectivity of our proposed GeSn/SiGeSn QWIP on SOI model. 
Parameters Device Peak Detectivity (cm·Hz1/2W-1) at 2 

V 
3-dB BW (GHz) 

N = 20, τ = 10 ps QWIP-on-Si 3.47×1012 [43] 45 [43] 

N = 15, τ = 10 ps QWIP-on-SOI 6.24×1012 70 

N = 20, τ = 30 ps QWIP-on-SOI 17.6×1012 95 

 

V. Conclusion 
In this study we have theoretically demonstrated the performance of an ISB GeSn/SiGeSn QWIP on 

SOI substrate in MIR region. The EQE and responsivity both increase due to the presence of vertical cavity 

effect than the conventional QWIP on Si. Moreover, in this analysis we have theoretically investigated different 

approaches including reduction of well number and increase of carrier lifetime to increase the 3-dB BW without 

decreasing the detectivity. In both the cases we have found that this proposed QWIP can give higher 3-dB BW 

and simultaneously higher detectivity than the previously reported ISB GeSn/SiGeSn QWIP. Due to its 

monolithic integrability on same Si chip, Si-based CMOS compatibility, high 3-dB BW along with high 

detectivity the proposed GeSn/SiGeSn RCE-QWIP is an encuraging device for high-performance 

photodetection in MIR applications.  
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